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Abstract—High penetration of electric vehicles (EVs) can 

potentially put the utility assets such as transformers under 

overload stress causing decrease in their lifetime. The decrease in 

PV and battery energy storage system (BESS) prices has made 

them viable solutions to mitigate this situation. In this paper, the 

economic aspect of their optimal coordination is studied to assess 

transformer loss of life and hottest spot temperature (HST). 

Monte Carlo simulation is employed to provide synthetic data of 

EVs load in a residential complex and model their stochastic 

behavior. For load, temperature, energy price and PV generation, 

data for City of College Station, Texas, USA in 2018 is acquired 

and a case study is developed for one year. The results illustrate 

using BESS and PV is economically effective and mitigates 

distribution transformer loss of life. 

Index Terms—battery energy storage, economic analysis, 

photovoltaic generation, electric vehicle, transformer loss of life.   

NOMENCLATURE 

PTi,j Average power that flows through the 
transformer excluding the effect of battery in 
the last 10 days before the jth day in the ith hour  

Pavg Average power that flows through the 
transformer in the last 10 days excluding the 
effect of battery 

𝑃𝐵𝑖  Power of the battery, charged (+) and 
discharged (-) 

η Efficiency of the battery and inverter 

EC Capacity of the battery in KWh 

𝑡𝐶1 , 𝑡𝐶2  Starting and ending time of charging 

𝑡𝐷1 , 𝑡𝐷2  Starting and ending time of discharging 

SOCt Battery state of charge at time t 

SOCEV EV battery state of charge 

𝐸𝐷
𝐸𝑉 Electricity consumption in KWh/mile 

𝑇𝐶𝐻
𝐸𝑉 Required time to charge PEV 

θH, θa Hottest spot and Ambient temperatures 

Δθh Winding hottest spot temperature rise over the 
top oil 

Δθto Top oil temperature rise over the ambient 

R Ratio between loss at rated load and no load 

Ku Ratio of ultimate load to the expected load 

FAA Aging acceleration factor 

FEQA Equivalent aging factor 

TP Time period under analysis in hour 

L Normal insulation life 

τω, τto Winding and oil time constant 

Ini, ult Refers to the initial and ultimate values 

Inv0 Initial investment 

PRt Profit at time interval t 

r Discount rate 

PB Payback period 
 

I. INTRODUCTION  

Electric vehicles (EVs) have been considered as a promising 
solution to reduce greenhouse gas emission and fossil fuel 
consumption. The EV global market is rising. Thus, in the near 
future, power system will face a new challenge from high 
penetration of EVs. It is challenging since it is expected that a 
large number of EVs will be connected to get charged in 
residential buildings with considerable overlap in charging 
time. This will expose assets such as transformers to 
overloading stress.  

Increasing presence of EVs will lead to more electricity 
consumption and this can cause several issues such as power 
quality deterioration [1], under-voltage condition [2] and extra 
demand on distribution transformers [3]. Usually distribution 
transformers do not have on-line monitoring and when they 
operate in an overload condition continuously, they will face 
accelerated aging and risk of their failure will rise [4]. In 
addition to an unexpected outage, their more frequent failure 
will cause more repair or replacement expenses.     

Battery energy storage system (BESS) cost has reduced and 
paved the path to be considered as a promising solution to 
mitigate the negative impacts of EVs’ high penetration. BESS 
can be employed for different applications such as energy 
arbitrage [5], frequency and voltage support [6], peak shaving 
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[7] and congestion management [8]. One of the additional 
benefits of using ES, considered in this paper, can be reducing 
the accelerated aging of the transformers. 

The adverse effect of EVs on the transformers is studied in 
[9], [10]. Reference [3] illustrates how different level of EV 
penetration will negatively affect the transformers in a 
residential complex. In [11], a probabilistic approach is 
proposed to investigate the impact of EV on transformers loss 
of life when PV generation is present.     

Reference [9] is the only one among the abovementioned 
papers that takes stationary battery energy storage into account. 
However, the main focus is proposing a smart charging 
approach in a presence of a predetermined BESS. Moreover, 
the economic analysis in [9] employs a dynamic pricing method 
for the customers and schedules BESS charging/discharging by 
optimizing the price for the customers. The contribution of our 
paper is studying the economic benefits of employing BESS 
and PV generation considering the mitigation of transformer 
loss of life that has not been studied before and yet it is shown 
that it is essential to consider it.  

For this purpose, one year data of EVs demand is created 
using a probabilistic approach. Load [12], irradiation [13], 
temperature [14] and electricity price data in the city of College 
Station, Texas, USA in 2018 are used to provide a realistic 
evaluation. The payback period of different scenarios is 
calculated and it is shown that employing BESS and PV 
generation yields tangible financial benefits.  

The rest of the paper is organized as follows. Section II 
shows the battery scheduling methodology. In section III, the 
utilized data is introduced. In Section IV, the employed method 
for generating EVs demand is illustrated. Section V presents the 
transformer aging model. In Section VI, the utilized economic 
model is proposed. In Section VII, the results are demonstrated 
and discussed and finally, in Section VIII, the main conclusions 
are outlined, followed by list of references.  

II. BATTERY CHARGING/DISCHARGING OPTIMIZATION 

The residential building that is used in this paper is shown 
in Figure 1. The nominal power of the transformer is 63KVA 
and PV system size is 10KW. The building load is connected 
to the same bus as PV panel, battery storage, and charging 
station. It is assumed that EV can only be charged, i.e. it 
operates in the grid to vehicle mode. The fixed BESS operates 
both in charging and discharging modes. The charging station 
is located in the parking lot of the residential building. 

In this paper, the assumed role of the battery is peak load 
shaving. It is assumed that the battery scheduling is day-ahead 
and the minimum state of charge is 20%. To prevent battery 
accelerated ageing, one cycle a day maximum is considered for 
battery charging/discharging. The following is total power 
flowing through the transformer in the absence of BESS during 
ten consecutive days before the current day.  
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For simplification, index j in further equations is removed. The 
optimization problem for the current day (jth day) is formulated 
as follows:  
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The battery should not be charged more than 100% and should 
not be discharged to less than 20% of selected state of charge. 
Hence, constraints (3) and (4) can be defined as follows:  
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Furthermore, the charging or discharging power should not be 
more than the nominal power of the battery charger that leads 
to the constraint (5).  

                         (5)
iB nP P  

The starting time of charging and discharging must be positive 
and should not exceed the ending time. The problem should 
obey the following constraints (6) – (8).  

1 2                          (6)C Ct t  

1 2                          (7)D Dt t  

1 2 1 2, , , 0                    (8)C C D Dt t t t   

Constraint (9) and (10) are defined for when charging is 
scheduled before discharging and when discharging is 
scheduled before charging, respectively. 
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Since the planning is day-ahead, heuristic optimization 
methods can be utilized to solve this optimization problem. In 
this paper, genetic algorithm is deployed. 

III. LOAD, SOLAR GENERATION AND TEMPERATURE 

DATA 

The load data is acquired from National Renewable Energy 
Laboratory (NREL), OpenEI [12]. The dataset contains the 
hourly load profile for different types of commercial and 
residential buildings. The data for the residential buildings is 
synthesized based on Building America House Simulation 
Protocols [15] and Residential Energy Consumption Survey 
(RECS) [16]. In the under study, there are 10 total customers 
from which energy consumption of 3 is low, 6 is medium and 
1 is high. PVWatts Calculator [17] is employed to calculate the 
hourly generation of the PV considering panel, inverter and 
solar irradiation. This system employs the newest data from 
National Solar Radiation Database and by receiving the 
information of the PV panel, can provide hourly data of PV 
generation for a specific location.  



 

 

The hourly temperature data is obtained from Iowa 
Environmental Mesonet [14]. The temperature data are 
collected using Automated Surface Observing Systems. The 
temperature of each hour is assumed to be fixed.  

IV. MODELLING UNCERTAINTIES OF EV CHARGING 

DEMAND  

To model the uncertainty of the demand imposed by EVs, 
the approach introduced in [9] is used. In order to estimate EV 
load profile several variables such as driving distance, arrival 
time and EVs’ characteristics are considered.  

In a residential building, it is more probable that EV owners 
leave the building in the morning and return in the evening. 
Thus, the following distribution function is used. The time of 
arrival is modeled with a normal distribution with the mean 
value of µd = 17:00 and standard deviation of σd = 2.28. 

2( , )                  (11)AT ATAT Gauss    

The daily driving distance is modeled using log-normal 
distribution with the mean value of µd = 3.37 and standard 
deviation of σd = 0.5. The distribution is defined as follows: 
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The SOC when EV is driven home can be calculated using 
equation (13): 
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It is assumed that the required SOC is 0.95. Thus, 
considering the EVs are charged with constant power, the 
required time to charge the vehicle can be calculated as 
follows: 
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Nissan Leaf is the studied electric vehicle in this paper. The 
battery capacity in this car is 24KWh and it consumes 

340Wh/mile. It is assumed the residents own 12 EVs cars and 
there are 10 charging slots in the building parking area. 

V. TRANSFORMER AGEING 

Loading and ambient temperature are the main factors that 
affect hot spot temeperature (HST) and transformer loss of life. 
When transformer is working under overload stress, the 
temperature adjacent to the winding of transformer increases 
and deteroriates winding insulation. It causes accelerated 
ageing for the winding insulation and decreases the life of the 
asset. IEEE Standard C57.91 [18] thoroughly explains 
quantification of this effect on loss of life. Firstly, the hottest 
spot temperature can be calculated:  
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For which the changes in temperature can be calculated as 
follows: 
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For which m and n are empirically derived exponents and 
their values depend on the cooling of transformer, the aging 
acceleration factor and the equivalent aging factor are FAA and 
FEQA. They can be calculated as follows:  
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And loss of life can be calculated using the following equation: 
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VI. ECONOMIC MODEL 

PV and BESS are relatively expensive equipment and it is 
essential to evaluate the viability of deploying them. Due to 
energy loss in the charging/discharging procedure, it is 
significant to evaluate the economic benefits. Several energy 
pricing and selling methods to residential customers exist and 
this may vary in different areas or cities. In the College Station 
area, which is the subject of study in this paper, the customers 
buy electricity from College Station Utility with fixed prices. 
In addition to a $7 monthly service fee, the electricity price is 
$0.1369/KWh from May to October and $0.1323/KWh from 
November to April including tax and transmission fees [19]. 
The College Station Utility buys the electricity based on the 

 

Figure 1. Schematic of the system under study. 



 

 

prices announced by Electric Reliability Council of Texas 
(ERCOT) every 5 minutes.  

The utilities are usually the owner of distribution 
transformers and they are the beneficiary of loss of life 
mitigation effect of PV and BESS utilization. Considering the 
electricity price, it is clear that the beneficiary of employing 
BESS is the utility and not customers, but utilities do not 
necessarily benefit from PV generation. In this context, 
customers should receive incentives from utilities to make 
using BESS economically attractive for them. Incentive 
determination is out of scope of this paper and the profit for 
both customer and utility is calculated to obtain the payback 
period of the investment regardless which parties share the 
investment.  

Net present value (NPV), shown in (23), is the difference 
between the present value of cash inflows and the present value 
of cash outflows over a period of time i.e. it is the difference 
between the current value of all incomes and investments. 
NPV is a usual index in investment planning to analyze the 
profitability of a project or investment. The payback (PB) 
period is the required time to recover the initial investment and 
can be obtained using (24).  
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Table I shows the summary of the parameters values used 
in the economic analysis. Transformer remaining life is 
assumed to be 112000 hours out of 180000 hours for a new 
one. Information regarding costs and rates are acquired using 
different available sources [20], [21]. Energy price increase 
rate is taken as the average of this value in USA in the last 20 
years. Used discount rate is announced by the U.S. Federal 
Reserve Board of Governors effective December 2018.  

TABLE I.  COSTS AND FINANCIAL PARAMETERS 

Equipment Costs Financial Parameters 

PV System $2.13/W 
Energy price 
increase rate 

2.6% /year 

BESS $0.4/W 
Discount Rate 3.0% /year Transformer 

NPV 
$5000 

To include transformer loss of life in the economic 
calculations equivalent annual cost (EAC) is used. EAC is the 
cost per year of owning and operating an asset over its entire 
lifespan and is calculated using the equation (25). In this 
equation, t is the expected life of the asset and NPV is the net 
present value of that.  
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The actual extra cost caused by transformer loss of life is 
the difference between EAC before investment on BESS 
and/or PV and after that. Therefore, PB can be calculated using 
equations (24) and (26). 
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VII. SIMULATION RESULTS 

The method is implemented in MATLAB, the transformer 
loss-of-life evaluation and economic calculations is performed 
for the following scenarios.  

a) No PV generation, no EV, and no energy storage. 
b) No PV generation , high penetration of EVs and no 

energy storage. 
c) PV generation, high penetration of EVs and no 

energy storage. 
d) No PV generation, high penetration of EVs and 

several levels of energy storage. 
e) PV generation, high penetration of EVs and 

several levels of energy storage. 

The results of one year study of 7 cases are shown in Figure 
2. In this table, it can be clearly seen how high penetration of 
EVs can negatively impact the life of the transformer and the 
effect can be mitigated using PV generation and BESS.  

 
Figure 2. Transformer loss of life for different scenarios. 

The introduced algorithm is used to manage the battery 
charging and the average load of this one year study is shown 
in Figure 3. Using the data, simulation results and the 
introduced economic model, payback periods of the 
abovementioned scenarios, for when loss of life is considered 
and when it is not, are calculated and shown in Figure 4.  

 
Figure 3. The average load with and without BESS. 

In Figure 5, it is shown how considering the economic 
impact of transformer loss of life can dramatically change the 
economic calculations. The conspicuous difference is in 
scenario d for which only BESS is employed. If the effect of 
BESS in transformer loss of life is not taken into account in the 
economic evaluations, utilizing BESS may look an unfeasible 



 

 

solution, but when its impact on transformer life is considered, 
it shows a promising solution to overcome the changes in the 
load curve for future grid with high penetration of EVs. Total 
annual savings in this case study are shown in Figure 5. It can 
be seen that increasing the BESS capacity from 20kWh to 
40kWh has almost no impact on savings in scenario e. In this 
study, battery capacity can only be used to feed the load 
downstream from the transformer. The load and generation in 
this part of the grid is limited, thus impact of increasing the 
battery size on loss of life mitigation is negligible.   

 
Figure 4. Payback period for different scenarios 

 
Figure 5. Total Annual Savings Due to Transformer Loss of Life Mitigation 

for Different Scenarios 

VIII. CONCLUSION 

We have studied how the impact of BESS and PV 
generation on transformer loss of life can vary the economic 
evaluation of the total investment by simulating a residential 
building demand for different scenarios of PV generation and 
EV charging penetration. Specifically, we have shown that 
ignoring positive effect of BESS on transformer’s life can be 
misleading. The demand for EV charging, generated using a 
probabilistic method based on data for the city of College 
Station, TX. The results show that: 

 Inclusion of 12 EVs and 10 parking spaces with charging 
stations in a building with 10 residents will greatly 
accelerate the aging of the transformer and reduce its life.  

 An EAC economic model of the costs of transformer loss 
of life shows that if only the profit from BESS energy 
storage  is considered, payback period will be rather long  

 Increasing the capacity of battery or using both PV 
generation and BESS may make the payback period 
longer since the value of mitigation does not offset the cost 
of investment. 

 Utilizing the proposed approach for optimal use of PV 
generation and BESS will mitigate the transformer loss of 
life caused by EVs, and at the same time the payback 
period is short enough making the  arrangement not only 
viable but also profitable. 
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