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Abstract—A novel multiresolution time-frequency analysis 

method for power system waveforms is proposed. Inspired by 

wavelet transform, which is widely used in time-frequency 

analysis of signal to achieve high resolution in both time and 

frequency domains, the proposed method uses “pseudo-wavelets” 

and performs similar procedures to calculate the correlations 

between scaled “pseudo-wavelets” and input signal, revealing 

the detailed energy distribution of input signal on a wide 

frequency range throughout the entire data window length. Both 

mathematical derivation and simulations show that the 

proposed method is capable of frequency tracking and 

disturbance detection. By extracting the features of proposed 

transform on typical power system signals, disturbance 

classification is also made possible.  

Index Terms—Multiresolution analysis, power system 

disturbance, power system measurements, time-frequency 

analysis, wavelet transform 

I. INTRODUCTION 

Detection and classification of power system waveforms 
are important topics in power quality studies [1]. Waveforms 
generated under various operating conditions are characterized 
by their time-frequency features. Thus, the localization and 
identification of these features on both time and frequency 
scales is crucial.  

An important branch of signal processing research is the 
time-frequency analysis. [2] Essentially, time-frequency 
analysis techniques map the same signal, originally in the 
form of time-domain waveform samples, onto other domains 
(spaces). Usually, such mapping or transforms involve 
tradeoffs between time and frequency resolutions. In time 
domain analysis, the original acquired signal is decomposed as 
the superposition of time-domain signals [3], where no 
frequency information is retained; on the other hand, in 
frequency domain analysis, Fourier analysis in particular, only 
the frequency composition is analyzed, which is a major 
caveat since discontinuities and transients in the data window 
will not be detected. It is due to Heisenburg uncertainty [4] 
that time and frequency resolutions cannot be optimized at the 

same time. Considering the nature of power waveforms where 
time-frequency fingerprints vary constantly, short-time 
Fourier transform (STFT) [5] partitions the input signal into 
smaller analyzing windows by repeatedly applying a sliding 
time-limited window function, where the frequency analysis 
of each truncated window is conducted. By doing so, temporal 
progress is revealed at the expense of sacrificing frequency 
resolution. Moreover, one of the pitfalls of STFT is invariable 
time-frequency atom, meaning the selection of such 
parameters determines the performance of STFT.  

Merely a few decades ago, wavelet transform (WT) was 
invented and has since redefined multiresolution signal 
processing. [6,7] A mother wavelet, and its scaled and time-
shifted versions, termed “children” wavelets, are used as the 
window functions, and similarities between each child wavelet 
and input signal are quantified. As a result, the input signal is 
repeatedly “scanned” by children wavelets with variable time-
frequency atom. In WT, the scaling factors of mother wavelet 
are utilized to signify variations, which are considered a more 
generalized quantity than frequency. In power system research, 
WT was used in low frequency electromechanical oscillation 
detection and analysis [8], and disturbance detection [9]. 
There are numerous types of mother wavelet families and 
members, and therefore, the selection of the mother wavelet 
affects the performance of WT and the interpretation of 
wavelet coefficients. The features of mother wavelet may be 
leveraged to analyze certain power signals. For example, 
Morlet wavelet is proven to be suitable for extracting 
ringdown patterns [8]. To the authors’ best knowledge, there 
is no mother wavelet “perfectly” designed for all types of 
signals in the power grid.  

Inspired by wavelet analysis, this paper proposes a similar 
framework for multiresolution time-frequency analysis. The 
idea is to compare input waveform with a scalable “pseudo-
wavelets”, such as a single-cycle cosine wave. By analyzing 
the similarities between scaled “pseudo-wavelets” and input 
data as time progresses, important features and patterns of the 
input signal, such as frequency patterns, can be extracted.  
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The rest of the paper is organized as follows. The proposed 
representation using “pseudo-wavelet” is discussed in Section 
II. Section III considers the implementation issues of the 
method. Simulations are conducted and results analyzed in 
Section IV, where the capabilities of proposed method in 
frequency tracking, disturbance detection and classification 
are demonstrated. Conclusions and further discussions are 
given in Section V. 

II. MULTIRESOLUTION ANALYSIS USING “PSEUDO-

WAVELETS” 

The mathematical structure of continuous wavelet 
transform (CWT) is reiterated, and the proposed 
multiresolution decomposition strategy using “pseudo-
wavelets” (PWs) is discussed afterward, followed by the 
practical interpretation of proposed method. 

A. Continuous Wavelet Transform 

Mathematically, CWT is defined in (1), 
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where  (t) is the mother wavelet function, a is the scaling 
factor, b is the time-shift factor, and * denotes complex 

conjugate. Functions  a,b(t) ≔ 1/√| |   [(t‒b)/a] are also 
termed “children wavelets”. The wavelets are also time-
limited and satisfy ∫ a,b(t)dt ≡ 0.  

Intuitively, CWT calculates the correlations between input 
signal x(t) and children wavelets  a,b(t), with changeable 
values of a and b. Since the mother and children wavelets are 
time-limited, the wavelets also serve as windowing that 
truncates input signal so that only the part of interest is 
analyzed.  

B. Proposed Decompostion with “Pseudo-Wavelet” 

Design of wavelets suitable for certain applications is a 
major research focus in mathematics. In general, using 
different families/members of mother wavelet in CWT gives 
distinct results, as shown in Fig. 1. Even though it is evident 
that energy concentrates in a band and it does not evolve over 
time, which agrees with the actual signal property, the 
intensity of energy bands are different and dependent on the 
choice of wavelet. Besides, scales in the original CWT results 
need to be translated back to signal properties, for example, 
frequency, to be meaningful, and this “translation” mechanism 
relies on wavelet properties and is not always easily found. 

In order to acquire a more consistent result, this paper 
proposed a similar measure for similarity as in (1), but instead 
of mother wavelet, sinusoidal waves are used. As proven in 
latter sections, the use of sinusoidal wave is suitable in the 
background of power system signals, as expressed in (2).  
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where  (x;a,b) denotes the correlation factor between  ̂(t) and 
 (t) for given a and b,  ̂(t)≔[x(t)‒ ̅]/max[x(t)] is the centered 
and normalized input signal,  (t) is a customized PW function, 

and is unit-amplitude cosine wave in this paper. The conjugate 
in (1) is not used since only real signals are considered. 

Analogous to WT, (2) can be interpreted as follows: cosine 
waves of various frequencies (denoted by a) and time-shifts 
(denoted by b) are used to repeatedly “scan” the input signal at 
a multiresolution level. The high frequency components in  ̂(t) 
can be captured by high frequency PW waves, when the 
envelope varies slow and therefore integrated out; the low 
frequency components, on the other hand, can be extracted by 
low frequency PWs, when the fast oscillating components 
cancel themselves out in the integral. The simplification of 
WT is legitimate in this case primarily because power signals 
are predominantly sinusoidal, or superposition of sinusoidal 
waves. Moreover, it is still possible to detection 
discontinuities in input signal by applying (2), where the 
discontinuity manifests changes in signal parameters or 
system operating conditions. 

 
Figure 1.  CWT on 60Hz Signal with (a) Daubechies-4 (b) Discrete Meyer  

(c) Gaussian-4 (d) Morlet wavelets, respectively 

C. Extracting Information Using Proposed Decomposition 

According to Fourier analysis, an input signal x(t) can be 
decomposed of the superposition of an infinite number of 
sinusoidal waves, as shown in (3), known as the inverse 
Fourier transform: 
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We may present the proposed method with one of the real 
components in (3) x1(t) at frequency f = f1. Consider the 
correlation integral defined in (2) between x1(t) and a PW xpw(t) 
at frequency f = fpw. Since the PW only has finite support over 
a span of Tpw = 1/fpw, it is convenient in the derivation that we 
denote the beginning of PW as time zero. As a result, integral 
(2) can be simplified as: 
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where x1(t) = cos(2𝜋f1t+𝜙1),  (t,fpw)≔ cos(2𝜋fpwt),   denotes 
the progress along time, or time lag, which only affects the 
apparent phase angle of x1(t). 

Expand (4) we have: 
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where  1 ≔ 2𝜋f1,  pw ≔ 2𝜋fpw. To maintain succinct writing, 
define 𝜙1’≔  1 +𝜙1. Using trigonometric properties, (5) can 
be broken down as: 
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The evaluation of (6) depends on the value ( 1‒ pw), and 
is elaborated as follows:  

Case 1:  1‒ pw = 0.  

 (    )  
∫     (     𝜙 

 )  
   

 
 ∫    𝜙 

   
   

 

 
 

 
   

 
   𝜙 

  
 

   
   (     𝜙 ) 

(7) 

The first integral is zero because 2 1≡2 pw and the 
integral on 2

nd
 harmonic over a period is zero.  

Case 2:  1‒ pw ≠ 0.  
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D. Practical Interpretations of  ( ) 

Using L’Hospital’s rule, the limit of (8) when  1→ pw can 
be evaluated, also note that  pwTpw≡2𝜋:  
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   Right-hand side of (7) 

(9) 

Thus, the evaluation of (4) can be expressed by (8), if the 
value at  1= pw is specified. The zeros of (8) are found by 
setting [sin( 1Tpw + 𝜙1’)-sin 𝜙1’]∙ 1= 0,  1≠ pw: 

 1 = k pw, k = 0,2,3,4,…, or 

   (    )     
      

, k = 0,1,2,3… 

(10a) 

(10b) 

According to (10a), when the scanning PW frequency 
happens to be zero or factors of unknown input power 
waveform frequency, integral (4) will be zero. For example, 
when the input waveform is a constant frequency signal at 
60Hz,  ( ) will be showing zero intensity at frequency bands 
30Hz, 20Hz, 15Hz, 12Hz, 10Hz, 6Hz, 5Hz, 4Hz, 3Hz, 2Hz, 
1Hz, 0Hz (trivial), with sufficient frequency resolution. 
Equivalently, by identifying the frequency of zero-bands, the 

actual input waveform frequency can be estimated as the 
least common multiple of such frequencies. 

III. IMPLEMENTATION OF PROPOSED METHOD 

In this section, the proposed method is first implemented 
by definition given by (4). In order to boost computation 
efficiency, the proposed method is practically implemented 
in the matrix form.  

A. Preliminary Implementation 

In this programming strategy, two FOR-loops are used to 
enable a scan on both time and frequency using PWs. The 
pseudo-code is shown in Algorithm 1. 

Algorithm 1 Implementation of Proposed Decomposition Method 

1:  READ input waveform x(t) 

2:  DETREND & NORMALIZE input waveform x(t), yielding  ̂(t) 
3:  DETERMINE frequency axis. Min frequency should be the reciprocal of 

total data length; max frequency should not exceed Nyquist frequency. 

4:  FOR time lag  , starting from 0 to the end of data window 

5:      CROP  ̂(t) according to time lag 

6:      ZERO-PAD so that the data length is the same as  ̂(t), yielding x’(t) 
7:      FOR each element of frequency axis 

8:            DETERMINE the values of pseudo-wavelet  (t,fpw) as a vector 

9:            CROP x’(t) to match the length of pseudo-wavelet 

10:          CALCULATE Hadamard product x’(t)∘ (t,fpw) 

11:          SAVE result  ( ,fpw) 

12:     END 
13: END  

In reality, the two FOR-loops are extremely inefficient. It 
is noticeable, however, that the computations inside the 
FOR-loops are essentially element-wise product (Hadamard 
product) calculations, which can be expedited by using 
matrix form.  

B. Matrix Formulation of Proposed Method 

Algorithm 1 can be considered as an operation repeatedly 
performed on the same input waveform, but each time some of 
the old data are deleted, which is analogous to a “hopping” 
window in STFT. The mechanism is illustrated in Fig. 2. 

 
Figure 2.  Illustration on the Matrix Formation of Proposed Method 

The transformation matrix comprises PWs of a set of pre-
defined frequencies, and thus can be generated off-line. The 
input signal matrix is generated as shown in Algorithm 2, and 
a simple example is given next to it. 

As proved in simulations, utilizing matrix speeds up 
calculation tremendously, shown in Section IV.C.  

IV. SIMULATION AND ANALYSIS 

The aforementioned procedures are coded using 
MATLAB

®
 program. The PC is equipped with Intel

®
 Core

®
 

Xeon dual core processor. Sampling frequency is set to be 6 
kHz which is close to IED capability. The simulations are 
performed to test the algorithm’s a) capability of tracking 

 



frequencies; b) capability to detect and classify disturbances; 
and c) computation efficiency of implementation strategies. 

Algorithm 2 Generation of Input Signal Matrix (hop size = 1) 

1:  READ input waveform x(t) 

2:  DETREND & NORMALIZE input waveform x(t), yielding  ̂(t) 

e.g.:  ̂(t) = [x1,x2,x3] 

3:  FORM matrix  ̂=the upper triangle part of 1N×N.  ̂=triu(ones(N)) 

e.g.:  ̂  [
   
   
   

], N=3 

4:  RESHAPE  ̂ into column, yielding  ̂     

e.g.:  ̂=[1,1,1,0,1,1,0,0,1]T 

5:  FORM  ̂    ̂  ̂  ̂    ̂      

e.g.:  ̂=[x1,x2,x3,x1,x2,x3,x1,x2,x3]
T 

6:  CALCULATE Hadamard product  ̂      ̂ ∘  ̂ 

e.g.:  ̂=[x1,x2,x3,0,x2,x3,0,0,x3]
T 

7:  RESHAPE  ̂     to XN×N 

e.g.:   [

    
     
      

], when the desired matrix is        [

      

     
    

] 

8:  EXTRACT diagonals of XN×N using spdiags(XN×N) ≔ (X2)N×N 

e.g.:   [

    
     
      

],    [

      

     

    

] 

9:  FLIP in the left-right direction, yielding Xinput 

A. Frequency Tracking 

As shown in Fig. 3, the intensity of correlation matrix 𝜞= 
( )ij is depicted as greyness in (a) and contours in (b), and 
frequencies 10Hz, 12Hz, 15Hz, 20Hz, 30Hz, 60Hz are 
highlighted with red dashed lines. It can be obviously seen that 
zero-bands fall into those frequencies. Thereby, (10a) is 
validated. Besides, by examining the least common multiple 
of the zero bands of 𝜞, the instant frequency can be estimated, 
although its accuracy is determined by frequency resolution.  

 

Figure 3.  Projection and Contour of Transform Result on 60Hz Waveform 

B. Disturbance Detection and Classification 

The term “disturbance” here is a generic notion referring 
to any change in the parameters and/or model of input 
waveforms. Such changes happen regularly in real power 
system operation and in PMU lab testing. As can be seen in 
Fig. 4, 0.5s frequency modulation and 0.5s steady state data 
are concatenated and used as the test signal. Similar to wavelet 
transform, higher frequency PWs are better at detecting 
disturbances, as it can be easily seen that before  =0.5s, the 
input waveform is frequency-modulated; and after  =0.5s, it 
appear to be in steady state.  

In practice, it is usually not necessary to extract all 
frequency components. The “zero-bands” on the contour are 
especially significant since they reveal frequency trajectories, 

which are indicative of current operating conditions. Shown in 
Fig. 5 are the typical responses from typical PMU test 
waveforms. [10] In each test case, a 0.5 second (30 cycles) 
waveform is generated, where the last ¼ of the waveform 
returns to 60Hz steady state (referred to as the “reference 
condition”). 

Under steady state test waveforms, shown in Fig. 5(a) 
65Hz input, and Fig. 5(b) 5

th
 harmonic input, it can be seen 

that the factors of instant frequencies (marked by the 
horizontal zero-bands) remain stable. In Fig. 5(a), the zero-
bands are shifted compared to reference waveform, as 
discussed in Fig. 3; in Fig. 5(b), it is evident that more 
frequency component are presented than reference condition. 

On the other hand, under dynamic state waveforms, the 
frequency components and/or frequency trajectories change 
throughout time. Since in power systems, such transients are 
rather slow compared to data window size, revelation of 
spectrum details depends heavily on frequency resolution. 
Regardless, 0.1Hz is adequate to provide an insight of the 
signal. Each type of input test waveform is characterized by 
distribution of energy on difference frequencies, which is 
revealed in the contours. For examples, amplitude-modulated 
waveform Fig. 5(c) features oscillation of signal energy near 
nominal frequency; frequency-modulated waveforms Fig. 5(d) 
shows oscillation of all frequency components; in frequency 
ramping waveforms Fig. 5(e) and (f), the zero-bands move 
slowly based on the sign of ramp. It is shown that the PW 
method can be used to classify power waveforms. 

  

Figure 4.  DTFT and DFT of Rectangular Window 

It is also worth noting that despite the illustrations given in 
the paper, in reality, to achieve faster response, tracking the 
zero-bands is done through computer programming, as 
depicting a contour figure is very time-consuming, and the 
human eyes may not be able to detect the changes. 

C. Computation Efficiency Analysis 

In this simulation, the justification of matrix formulation is 
provided by comparing the computation time of matrix 
implementation with Algorithm 1. Input data array size 
(therefore considering sampling rate and data window length), 

 

 



 

Figure 5.  PWT Result for Multiple Test Waveforms: (a) Static 65Hz; (b) 5th Harmonic; (c) Amplitude Modulation; (d) Frequency Modulation; (e) 
Frequency Ramping at 1Hz/s; (f) Frequency Ramping at -1Hz/s 

frequency range (max and min frequency and frequency 
resolution) are considered as the contributing factors. 

Computation times as well as the memory allocations are 
also displayed. Only 4 cases are tested since they already 
provide very evident and consistent results, shown in Table I. 

TABLE I.  COMPUTATION EFFICIENCY TEST OF TWO IMPLEMENTATION  
                                                                 STRATEGIES 

V. CONCLUSION AND FURTHER DISCUSSIONS 

This paper presents a novel approach to extract power 
system frequency features which can be thereafter employed 
for disturbance classification and identification. The 
contributions are: 

 The concept of using other types of scalable signals (termed 
“pseudo-wavelets” in the paper) is promoted. The PWs 
should be structured to fit power system application in order 
to extract feature of interest. The proposed concept aims to 
serve as a simplification of WT in power system to provide 
more concise waveform analysis. 

 Cosine waves are used in this paper to address the concept. 
Mathematical expressions of proposed method are derived 
and discussed. 

 The proposed method is capable of frequency tracking, 
disturbance detection and classification. As shown in 
simulations, proposed method can reveal the frequency 

details in typical power system test waveforms defined in 
[10], and thereafter facilitate the classification and 
identification of input test waveforms. 

 The original iteration-dependent algorithm can be easily 
optimized into matrix calculation, which enables fast 
calculation and therefore has practical significance. 
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Case Details 
Matrix 𝜞 Size 

(Time, Freq.) 

Computation Time 

Matrix 

Formulation 

Two 

FOR-loops 

10 cycles, fsam=6kHz 
6Hz~60Hz, REZ 0.1Hz 

(1000,541) 
4.324MB 

0.069s 9.667s 

10 cycles, fsam=6kHz 

6Hz~120Hz, REZ 0.1Hz 

(1000,1141) 

9.128MB 
0.073s 17.115s 

20 cycles, fsam=6kHz 

3Hz~120Hz, REZ 0.1Hz 

(2000,1171) 

18.736MB 
0.250s 37.117s 

30 cycles, fsam=6kHz 

2Hz~60Hz, REZ 0.01Hz 

(3000,5801) 

139.224MB 
0.596s 356s 

Note: REZ: resolution; Freq.: frequency 


